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PREFACE

‘l‘hxs report was prepared under the ‘Ocean Measurements

and Array Technology. (OMAT) portion of the SEAGUARD Program

_ sponsored by the Defense Advanced Research Projects Agency
(ARPA Order No. 2976), Program Manager, R. Cook, Tactical
Technology Office; NUSC Project No. A-696-70, Principal
Investigator, G. anfin (Code 311) ' ‘

The Techmcal Rev1ewer for this report was Dr. Phillip
B. Abraham (Codé 313) and the author wishes to thank him for
his assistance in the preparation of this report.
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The author of this report is located at the New London
Laboratory, Naval Underwater Systems Center,
' New London, Connecticut 06320,
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A METHOD FOR THE NUMERICAL SOLUTION OF A
PARTICULAR SET OF COUPLED ORDINARY
NONLINEAR DIFFERENTIAL EQUATIONS

INTRODUCTION

The mathematical modeling of certain physical phenom-
ena can be treated by many basic methods. Certain cases
may lead to systems of nonlinear differential equations
which can only be investigated by approximate methods. This
paper discusses a system of equations of the form

AQ = BG - c0? - DO - EQ,

where A,B,C,D_and E are square coefficieng matrices and
G,¢.2,0 and Q¢ are column vectors. Here Q2 is the column

vector
«o |
f'qz

A method by which numerical solutions may be effected is
also discussed.
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PARTICULAR SET OF EQUATIONS

Consider the system of differential equations written
in matrix form as below,

AQ = BG - c0? - DO - EQ, (1)

where the matrices and vectors are real and A is
i nonsingular.

If A is a square nonsingular matrix then it possesses
an inverse, A-1l, Multiplying through by a-1l gives

0 = Aa-1BG - a~1c02 - a~1pd - EQ (2a)
or
8 = 36 - k3% - 1 - Mo, (2b)
where
J = A-1p
K = a~1lc
L = A" 1lp
M = E.

If Q is a column vector of order n, then Q can be
expressed as

Q = ' (3)
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and its time derivatives as

G| (4)

and

Q= * (5)

If A, B, C, D, and E are of (n x n) order, the matrix
multiplication in (2a) will yield n ordinary coupled differ-
ential equations which are nonlinear due to the g¢ terms as
shown below, b

o2

oo . . . . ‘2
1 fl (t, ql, q2, o 9l 's qnl ql, qzr . o qn, ql, .« e qn) (6a)
.o . . . '2 '2 02
= £ t; 7 v Fae ki ~ Y e 6b
5 > ( ql qzr qn: qlr q2 an ql q2 qn) ( )

oo 3 . . '2 ‘2 '2
= f £, il £2 0 " i : 5
q n ( 9y q2 Gat Gyt Gy a9, qz, qn) (6c)

At the present time, a closed-form solution to these
equations is not obtainable. It should be noted that for
some physical problems, the coefficient matrices may possess
time-dependent elements; if so, equations (6) become a set
of nonautonomous, nonlinear, differential equations.
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A BRIEF BACKGROUND ON THE RUNGE-KUTTA METHOD

The solution of nonlinear differential equations in
closed analytic form is not usuvally possible. The demands
of applied science make it necessary to obtain some insight
into the nature of solutions subject to given boundary con-
ditions. Graphical and numerical representation of the
functions are the usual methods employed.l

The numerical solution of differential equations by a
method of finite integration in one of its several forms is
a favorite tool when performed by means of digital comput-
ers. The Runge-Kutta method is used perhaps more than any
other, and will be reviewed here briefly.2

Consider a system of first-order simultaneous differ-
ential equations. For simplicity, choose two as given below
(note that the method can be extended to n equations).

K=t y, 2) (7)
dz .
ac - 9(t, vy, 2).

The estimate for the function y and z at some later
time (t + h) can be computed by the relations

y(t)
and (8)

Yo + Ay =y  + 1/6 (A'z + 24" + 24"'y + aly)

+
25 Az

z(t) 2, + 1/6 (&'z + 24z + 208"z + A7),

The increment values (Al) are computed from:

Ay = £(t,, Yo z,)) h (9)
1 -
Az = g(t_, ¥or zo) h
Aty = £(t, + 1/2h, y, + 1/2 A'y, 2, + 1/2 &'3) R (10)
Az =

1 L
g(to + 1/2h, ¥, + 1/2 Ay, zo ¢ 1/2 A'z) h

e L
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2y f£(t, + 1/2h, Yo * /2 &My

"
ot Ba + /2 A%2) 'R (11)
A''z = glty, + 1/2h, Yok 1/2 Ay, z, + 1/2 A"z) h
Aly = £(tg + h, y, + &'y, z_ + &''z) h (12)
4 = " "
N2 g(t_ + h, ¥ = AN z F AT 2N R

O

If the increments of y and z are computed in the order
given, only the previously computed increments are needed in
each step in the computation (i.e., the increments cannot be
computed simultaneously) .

This method can be applied to a system of higher-order
equations without essential change. Consider the system of
second-order equations

2
L @ 0V %}ti, g_tz__) (13)
dt2
and
a2z d dz
A2 - qle v, 5 410 92
dt?
Introducing the new variables
u=9%X 5ng v = 42, (14)
dt dt
the system of equations given by (13) becomes
Sd'p"= f(tl Y, 2, U, V)
dt
and (15)
‘d_Y‘ = g(tr Y 2, 4, v).
dt

This system of equations can now be numerically inte-
grated, using the method described earlier.

Consider the system of equations given in (6) earlier.
The Runge-Kutta integration method requires that the

R
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! highest-order derivative of only one dependent variable be

? on the left side of the equality in each equation, since the
estimate of each function (see equations (9) through (12))
is computed in a stepwise fashion, using the increment
values Al. An attempt to numerically integrate a system of
equations with more than one highest-order derivative on
either side of the equality will make the Runge-Kutta
algorithm unstable. The set of eaquations given in (6) are
now of a form which is acceptable to the Runge-Ku*ta
algorithm.

Note that the elements of the coefficient matrices may
be time-dependent. If so, they can be computed at each time

increment before the matrix operations take place. Most
digital computers are equipped with built-in subroutines
for the evaluation of matrices and determinants. These can
be incorporated within the numerical integration loop as

the integration is carried on.

EXAMPLE

Consider the equation of motion of a towed body moving
through a nonaccelerating viscous fluid.3:4 1n body
coordinates, the equations become, in matric form,

MgQ - MG + H + T = 0, (16)

Mg = the body structural mass matrix

Q = the displacement vector of the body
G = the gravitational vector

H = the hydrodynamic force vector

T = the towline tension vector.

The hydrodynamic force vector (from boundary layer
theory5) can be written as

H = M0 + D, (17)

=
=3
i

the body hydrodynamic mass matrix
mhij (see appendix)
the viscous force vector.

O
i
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Substituting (17) into (16) gives
(Mg + M) Q = MG - D - T. (18)

If the viscous force vector is considered to be given in the
form

D = C10% + CyQ, (19)

where C) and C, are viscous coefficient (i.e., 1lift, drag,
linear-damping coefficients or stability derivatives)

matrices for the body in question, substitution into (12)
gives

(Ms + Mp) O = MgG - C30% - c,0 - T, (19)
which is of the same form as (1) discussed previously.

For a body with six degrees of freedom, there are
6 x 2 = 12 equations which describe the body motion (i.e.,
acceleration and velocity) and the necessary auxiliary re- .
lations which must be found to compute the towline tension.>s4

Using the method described in the first section, these
equations can be numerically integrated when put into the
form as given by (6). Note that the elements of the hydro-
dynamic mass matrix may be time- or amplitude-dependent.6,7
For this case, they can be recomputed at the end of each
time increment in the numerical integration before the
matr..x operations in (2) are performed.
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SUMMARY

It has been noted that a particular set of nonlinear
differential equations may be reduced to a form such that
numerical integration of the equations may be effected using
a Runge-Kutta method. One example of a physical system to
which a set of equations of this form may apply has been
provided to illustrate the problem. It is the intent of
this paper to point out one approximate method of solution
to these equations as an aid to anyone confronted by a
similar problem.
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APPENDIX
HYDRODYNAMIC MASS

For the case of a body moving through a fluid, the
effects on body motions due to hydrodynamic inertia (or
hydrodynamic mass) terms must sometimes be accounted for by
the mathematical model used. For a body moving in an un-
steady manner, the fluid disturbance due to the body motion
extends in decreasing amplitude to infinity. From a system
of reference moving with the body, the effect can be con-
sidered as localized to a finite volume of fluid surrounding
the body. The body acts as if an added mass of fluid is
moving with it. If the body is subjected to an accelera-
tion, not only must the body mass be accelerated but also
the added mass of fluid.$8

Writing Newton's Second Law for the body gives
F = (m+ mh)'3 .

Here m is the mass of the body and my is the added mass or
hydrodynamic mass of the body.

The hydrodynamic mass is expected to be proportional
to the fluid density, body size (i.e., its volume), and its
orientation while in motion through the fluid. For general
body cases with six motion degrees of freedom, there are 21
hydrodynamic inertia components.® These are best given in
the form of a symmetric tensor. Specifically,

i =1y 2, 344..6
én J=l 2y 3 o516,
where ¢; is the normalized velocity potential caused by a

unit motion from some reference position, and it can be
shown that the various 8¢i depend only on body shape.sl
on

Miller? has shown that the hydrodynamic mass values
may be both frequency and amplitude dependent for irregular
shaped bodies. For this condition, the set of differential
equations used to model the body motion become nonauton-
omous. The techniques described in the body of the report
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may be useful in obtaining approximate solutions to the
types of equations used to model this problem.

The effects of hydrodynamic inertia terms on some
physical systems may be significant and should be considered
when writing equations of motion for such systems. If they
are determined to be negligible as applied to a particular
system, they should, by all means, be neglected in order to
effect solutions. However, in the case of certain body
motions in a viscous fluid, the equations of motion may
become highly nonlinear due to the effects of damping and
hydrodynamic inertia. For this case, numerical methods of
solution may be required.
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